10 research outputs found

    Scaling Success: Lessons from Adaptation Pilots in the Rainfed Regions of India

    Get PDF
    "Scaling Success" examines how agricultural communities are adapting to the challenges posed by climate change through the lens of India's rainfed agriculture regions. Rainfed agriculture currently occupies 58 percent of India's cultivated land and accounts for up to 40 percent of its total food production. However, these regions face potential production losses of more than $200 billion USD in rice, wheat, and maize by 2050 due to the effects of climate change. Unless action is taken soon at a large scale, farmers will see sharp decreases in revenue and yields.Rainfed regions across the globe have been an important focus for the first generation of adaptation projects, but to date, few have achieved a scale that can be truly transformational. Drawing on lessons learnt from 21 case studies of rainfed agriculture interventions, the report provides guidance on how to design, fund and support adaptation projects that can achieve scale

    Installment 1 of Creating a Sustainable Food Future: The Great Balancing Act

    Get PDF
    During 2013 and 2014, WRI is releasing on a rolling basis a series of "Creating a Sustainable Food Future" working paper installments. Each installment will analyze a menu item from our proposed "menu for a sustainable food future" and recommend policies and other measures for implementation. The series will not, however, cover all menu items. Questions each installment will consider include:What is the menu item?How big an impact could it make in food availability, economic development, and environmental benefits?Where might the menu item be most applicable?What are the three to five most promising, practical, and scalable approaches for achieving this menu item?What are the obstacles -- economic, political, technical, or other -- to implementing these approaches?How can these obstacles be overcome?What "bright spots" of success exist, and what can be learned from them?Each installment will be coauthored by its own cohort of WRI researchers, WRR partners, and renowned experts. Authors will engage representatives from target audiences during the research and writing phases. After the series has concluded, WRI will consolidate the installments into a final World Resources Report. To avoid overlap with upcoming installments, this first working paper does not cover many of the issues that may be important for the food-development-environment nexus. For instance, it does not cover international investments in agricultural land ("land grabs"); the merits of small-scale versus large-scale agricultural systems; the influence of land tenure, property rights, and generational succession laws and norms on agricultural productivity; and policies for providing access to clean energy services for agriculture. Future installments will address some of these issues. Many of the analyses in this series are global in nature and use global datasets. We recognize that they may not fully account for the ethical, cultural, and socioeconomic factors of specific locations. Moreover, the menu for a sustainable food future is designed for the long term; it is not a menu for tackling acute, near-term food shortage crises

    Étude structurale et fonctionnelle de l’activité de relecture par GreA au cours de la transcription

    No full text
    Universellement, la transcription de l’ADN en ARN, est effectuée par l’ARNpolymérase (RNAP). Au cours de ce processus, un substrat NTP incorrect peutêtre incorporé dans la molécule d’ARN naissante, résultant en la RNAP entre dansun état de rétrogradé et ne peut pas poursuivre l’élongation de l’ARN. Pour se sortirde cet état et reprendre son activité de transcription, la RNAP coupe la partieerronée de l’ARN. L’efficacité de ce processus catalytique de relecture est accrue enprésence de facteurs de clivage GreA dans E. coli. Les structures ont été obtenuespar cryo-EM d’un complexe rétrogradé d’un nucléotide avec et sans le facteur declivage GreA, montrant l’importance du motif structurel de la RNAP connu sous lenom « trigger loop », et du processus de sélection de GreA parmi d’autres facteursde transcription structurellement similaires. De plus, les structures ainsi que lesrésultats des tests de transcription in vitro montrent les différentes manières queGreA participe au clivage.The first step of gene expression, transcription of DNA to RNA, is carried outby DNA-dependent RNA polymerase (RNAP). During this process, an incorrectNTP substrate might be incorporated into the growing RNA molecule. Whenthis occurs, RNAP enters a backtracked state in which it cannot continue withelongation of the RNA. To rescue itself from this backtracked state, RNAP cuts offthe erroneous portion of the RNA in a catalytic process whose efficiency is increasedin the presence of specific cleavage factors (GreA in bacteria, TFIIS in eukaryotes).Cryo-EM structures of a complex backtracked by 1 nucleotide with and withoutthe cleavage factor GreA bound to the secondary channel were used to addressquestions related to the process of proofreading in E. coli RNAP, specifically thoseof the importance of the RNAP structural motif known as the trigger loop, andthe process of selection for GreA amongst other structurally similar transcriptionfactors. In addition to this, the structural data along with results from in vitrotranscription assays show that GreA participates in cleavage in multiple ways.Key words: RNA polymerase, transcription, proofreading, GreA, cryo-electronmicroscop

    Étude structurale et fonctionnelle de l’activité de relecture par GreA au cours de la transcription

    No full text
    The first step of gene expression, transcription of DNA to RNA, is carried outby DNA-dependent RNA polymerase (RNAP). During this process, an incorrectNTP substrate might be incorporated into the growing RNA molecule. Whenthis occurs, RNAP enters a backtracked state in which it cannot continue withelongation of the RNA. To rescue itself from this backtracked state, RNAP cuts offthe erroneous portion of the RNA in a catalytic process whose efficiency is increasedin the presence of specific cleavage factors (GreA in bacteria, TFIIS in eukaryotes).Cryo-EM structures of a complex backtracked by 1 nucleotide with and withoutthe cleavage factor GreA bound to the secondary channel were used to addressquestions related to the process of proofreading in E. coli RNAP, specifically thoseof the importance of the RNAP structural motif known as the trigger loop, andthe process of selection for GreA amongst other structurally similar transcriptionfactors. In addition to this, the structural data along with results from in vitrotranscription assays show that GreA participates in cleavage in multiple ways.Key words: RNA polymerase, transcription, proofreading, GreA, cryo-electronmicroscopyUniversellement, la transcription de l’ADN en ARN, est effectuée par l’ARNpolymérase (RNAP). Au cours de ce processus, un substrat NTP incorrect peutêtre incorporé dans la molécule d’ARN naissante, résultant en la RNAP entre dansun état de rétrogradé et ne peut pas poursuivre l’élongation de l’ARN. Pour se sortirde cet état et reprendre son activité de transcription, la RNAP coupe la partieerronée de l’ARN. L’efficacité de ce processus catalytique de relecture est accrue enprésence de facteurs de clivage GreA dans E. coli. Les structures ont été obtenuespar cryo-EM d’un complexe rétrogradé d’un nucléotide avec et sans le facteur declivage GreA, montrant l’importance du motif structurel de la RNAP connu sous lenom « trigger loop », et du processus de sélection de GreA parmi d’autres facteursde transcription structurellement similaires. De plus, les structures ainsi que lesrésultats des tests de transcription in vitro montrent les différentes manières queGreA participe au clivage

    Étude structurale et fonctionnelle de l’activité de relecture par GreA au cours de la transcription

    No full text
    The first step of gene expression, transcription of DNA to RNA, is carried outby DNA-dependent RNA polymerase (RNAP). During this process, an incorrectNTP substrate might be incorporated into the growing RNA molecule. Whenthis occurs, RNAP enters a backtracked state in which it cannot continue withelongation of the RNA. To rescue itself from this backtracked state, RNAP cuts offthe erroneous portion of the RNA in a catalytic process whose efficiency is increasedin the presence of specific cleavage factors (GreA in bacteria, TFIIS in eukaryotes).Cryo-EM structures of a complex backtracked by 1 nucleotide with and withoutthe cleavage factor GreA bound to the secondary channel were used to addressquestions related to the process of proofreading in E. coli RNAP, specifically thoseof the importance of the RNAP structural motif known as the trigger loop, andthe process of selection for GreA amongst other structurally similar transcriptionfactors. In addition to this, the structural data along with results from in vitrotranscription assays show that GreA participates in cleavage in multiple ways.Key words: RNA polymerase, transcription, proofreading, GreA, cryo-electronmicroscopyUniversellement, la transcription de l’ADN en ARN, est effectuée par l’ARNpolymérase (RNAP). Au cours de ce processus, un substrat NTP incorrect peutêtre incorporé dans la molécule d’ARN naissante, résultant en la RNAP entre dansun état de rétrogradé et ne peut pas poursuivre l’élongation de l’ARN. Pour se sortirde cet état et reprendre son activité de transcription, la RNAP coupe la partieerronée de l’ARN. L’efficacité de ce processus catalytique de relecture est accrue enprésence de facteurs de clivage GreA dans E. coli. Les structures ont été obtenuespar cryo-EM d’un complexe rétrogradé d’un nucléotide avec et sans le facteur declivage GreA, montrant l’importance du motif structurel de la RNAP connu sous lenom « trigger loop », et du processus de sélection de GreA parmi d’autres facteursde transcription structurellement similaires. De plus, les structures ainsi que lesrésultats des tests de transcription in vitro montrent les différentes manières queGreA participe au clivage

    Creating a sustainable food future. A menu of solutions to sustainably feed more than 9 billion people by 2050. World resources report 2013-14 : interim findings

    No full text
    Rapport publiéThe world’s agricultural system faces a great balancing act. To meet different human needs, by 2050 it must simultaneously produce far more food for a population expected to reach about 9.6 billion, provide economic opportunities for the hundreds of millions of rural poor who depend on agriculture for their livelihoods, and reduce environmental impacts, including ecosystem degradation and high greenhouse gas emissions. The forthcoming 2013-14 World Resources Report, Creating a Sustainable Food Future, responds to this challenge with a menu of solutions that could achieve this balance. This report provides an initial analysis of the scope of the challenge and the technical prospects of different menu item
    corecore